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‘Lative’ is “motion”, motion ‘to’ and ‘from’, so when terms
appear in sentences, terms ‘move into’ sentence, and
sentences ‘move away from’ terms. In comparison, ‘ablative’ is
“motion away”, and nominative is static. The lative locative case
(casus) indeed represents “motion”, whereas e.g. a vocative
case is identification with address.
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“Lative logic” is more about “lativity” between various
components and building blocks of a logic as a categorical
object, rather than traditionally creating “yet another logic”.
It is also distinct from the “fons et origo” foundational logic,
where the roles of metalanguage and object language may
be blurred.
This approach to logic assumes category theory as its
metalanguage, and leans on having signatures as a pillar
and starting point for “terms”, which in turn are needed in
“sentences”, and so on.
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A negation operator ¬ can be applied to the term P(x),
which indeed is constructed by the operator P, so that
¬P(x) and P(x) are of the same sort, as terms.
However, as ∃x .P(x) is not a term, but is expected to be a
sentence, and it is very questionable whether ¬ in
¬∃x .P(x) and ∃x .¬P(x) really is the same symbol.
In ∃x .¬P(x), it acts an operator, changing a term to term,
but in ¬∃x .P(x) it changes a sentence to a sentence, so it
is strictly speaking not an ‘operator’.
Variables may be substituted by terms, but ‘sentential’
variables make no sense with respect to substitution.
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Assigning uncertainty is far from trivial, and the place
where uncertainty should be invoked is also not always
clear.
Logic, as a structure, contains signatures, terms,
sentences, theoremata (as structured sets of sentences, or
‘structured premises’), entailments, algebras, satisfactions,
axioms, theories and proof calculi.
It may then be reasonable to assume that Fuzzy Logic,
again as a structure, contains fuzzy signatures, fuzzy
terms, fuzzy sentences, fuzzy theoremata, fuzzy
entailments, fuzzy algebras, fuzzy satisfactions, fuzzy
axioms, fuzzy theories and fuzzy proof calculi, i.e. ‘fuzzy’
distributes over the operator that glues substructures in
logic into a whole.
This is then the foundational background also for Fuzzy
Logic Programming.



Motivation Terms Sentences Lative logic Type theory Algebras Applications

We present results on adapting a strictly categorical
framework, as a chosen metalanguage, enables us to be
very precise about the distinction between terms and
sentences, where ‘boolean’ operator symbols, i.e. where
the codomain sort of the operator is a ‘boolean’ sort,
become part of the underlying signature.
Implication is not introduced as an operator in the
signature, nor as a short name using existing operators,
but will appear as integrated into our sentence functors.
We produce a sentence as a pair (P(x),Q(y)) of terms,
where they are produced by its own term functors.
Intuitively, this corresponds to “P(x) is inferred by Q(y)”.
The ‘pairing operation’, i.e., the ‘implication’, is not given in
the underlying signature as an operator, but appears as
the result of functor composition and product within a
‘sentence constructor’.
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Signatures

The previous talk was using a strictly mathematical, and a
‘monoidal biclosed categorical’ notation for signatures.
Here we adopt the more ‘computationally intuitive’ notation
of a signature, but the content and concept is the same as
for the strict one.
A many-sorted signature Σ = (S,Ω) consists of a set S of
sorts (or types), and a tupled set Ω = (Ωs)s∈S of operators.
Operators in Ωs are written as ω : s1 × · · · × sn → s.
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Signatures over underlying categories

We indeed restrict to quantales Q that are commutative
and unital, as this makes the Goguen category Set(Q) to
be a symmetric monoidal closed category and therefore
also biclosed.
This Goguen category carries all structure needed for
modelling uncertainty using underlying categories for fuzzy
terms over appropriate signatures.
A signature (S, (Ω, α)) over Set(Q) then typically has S as
a crisp set, and α : Ω //Q then assigns uncertain values
to operators.
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Highlights of the term construction

We use the notation
Ωs1×···×sn→s

for the set of operators ω : s1 × · · · × sn → s (in Ωs) and

Ω→s

for the set of constants ω :→ s (also in Ωs), so that we may
write

Ωs =
∐

s1,...,sn
n≤k

Ωs1×···×sn→s.
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For the term functor construction over Set(Q) we need objects

(Ωs1×···×sn→s, αs1×···×sn→s)

for the operators ω : s1 × · · · × sn → s, and

(Ω→s, α→s)

for the constants ω :→ s.
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The term functor construction over Set

Ψm,s((Xt)t∈S) = Ωs1×...×sn→s ⊗
⊗

i=1,...,n

Xsi ,

changes over Set(Q) to

Ψm,s(((Xt, δt))t∈S) = (Ωs1×...×sn→s, αs1×...×sn→s)⊗
⊗

i=1,...,n

(Xsi , δsi )

= (Ωs1×...×sn→s ×
∏

i=1,...,n

Xsi , α
s1×...×sn→s �

⊙
i=1,...,n

δsi ).
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The inductive steps in the construction:

T1
Σ,s =

∐
m∈Ŝ Ψm,s

TιΣ,sXS =
∐

m∈Ŝ Ψm,s(Tι−1
Σ,tXS t Xt)t∈S), for ι > 1

We have TιΣXS = (TιΣ,sXS)s∈S. Further, (TιΣ)ι>0 is an inductive
system of endofunctors, and the inductive limit F = ind lim−→TιΣ
exists.

The final term functor:
TΣ = F t idSetS

We also have TΣXS = (TΣ,sXS)s∈S.
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Terms and ground terms

In order to proceed towards creating sentences, we need the
so called ‘ground terms’ produced by the term monad.

Σ0 = (S0,Ω0) over Set

TΣ0 term monad over SetS0

TΣ0∅S0 is the set of ‘ground terms’
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‘Predicate’ symbols as operators in a signature

We now proceed to clearly separate views of terms and
sentences, respectively, in propositional logic and
predicate logic.
In order to introduce ‘predicate’ symbols as operators in a
specific signature, we assume that Σ contains a sort bool,
which does not appear in connection with any operator in
Ω0, i.e., we set S = S0 ∪ {bool}, bool 6∈ S0, and Ω = Ω0.
This means that TΣ,boolXS = Xbool, and for any
substitution σS : XS // TΣXS, we have σbool(x) = x for all
x ∈ Xbool.
bool is kind of the “predicates as terms” sort.
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Propositional logic

Signature:

Let ΣPL = (SPL,ΩPL), where SPL = S and
ΩPL = {F,T :→ bool,& : bool× bool→ bool,¬ :
bool→ bool}∪{Pi : si1×· · ·×sin → bool | i ∈ I,sij ∈ S}.
Similarly as bool leading to no additional terms, except for
additional variables being terms when using Σ, the sorts in
SPL, other than bool, will lead to no additional terms
except variables.
Adding ‘predicates’ as operators even if they produce no
terms seems superfluous at first sight, but the justification
is seen when we compose these term functors with TΣ.
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For the sentence functor, we need the ‘tuple selecting’
functor args : CS // C such that argsXS = Xs and
argsfS = fs.
We also need the ‘variables ignoring’ functor
φs : SetS // SetS such that φsXS = X ′S, where for all
t ∈ S\{s} we have X ′t = ∅, and X ′s = Xs. Actions on
morphisms are defined in the obvious way.

Propositional logic ‘formulas’ as sentences:

SenPL = argbool ◦ TΣPL
◦ φbool
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Notational flexibility and selectivity ...

ΣPL\¬ is the signature where the operator ¬ is removed,
and ΣPL\¬,& where both ¬ and & are removed⋃
s∈S(TΣ,s ◦ φ

S\bool)∅S is the set of all ‘non-boolean’
sorted terms, i.e., the “unsorted set” of all “ground terms”,
and corresponds to the so called the “Herbrand universe”⋃
s∈S(TΣ,s ◦ φ

S\bool)XS is syntactically the set of all
‘non-boolean’ sorted terms, i.e., the “unsorted set” of all
terms, and corresponds semantically to the “Herbrand
interpretation”
note also how (argbool ◦ TΣPL\¬,&

◦ φbool)XS = {F,T}
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The sentence functor for Horn clause logic (HCL)

SenHCL = (argbool)2 ◦ (((TΣPL\¬,&
◦ TΣ)× (TΣPL\¬

◦ TΣ)) ◦ φS\bool)

= (argbool)2 ◦ ((TΣPL\¬,& × TΣPL\¬) ◦ TΣ ◦ φ
S\bool)

the pair (h,b) ∈ SenHCLXS, as a sentence representing the
‘Horn clause’, means that h is an ‘atom’ and b is a
conjunction of ‘atoms’
(h,T) is a ‘fact’
(F,b) is a ‘goal clause’
(F,T) is a ‘failure’
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Modus Ponens as an inference rule then looks more
like ...

(F,b) (h,b)

(h,T)

This is correctly written since we use sentences only, i.e., not
mixing terms and sentences in proof rules, but it is still informal
since an inference rule involves ‘theoremata’.

Anticipating the notion of ‘theoremata’ as a structured set of
sentences, the following proof rule involves ‘one-sentence
theoremata’ in the special case of having the theoremata
functor being the powerset functor composed with the sentence
functor.

{(F,b)}‡{(h,b)}
{(h,T)}
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Variable substitutions within sentences

σS : φS\boolXS // TΣφ
S\boolYS

µ ◦ TΣσS : TΣφ
S\boolXS // TΣφ

S\boolYS

σhead
S = TΣPL\¬,&(µ ◦ TΣσS) : (TΣPL\¬,&

◦ TΣ)φS\boolXS

// (TΣPL\¬,&
◦ TΣ)φS\boolYS

σbody
S = TΣPL\¬(µ ◦ TΣσS) : (TΣPL\¬

◦ TΣ)φS\boolXS

// (TΣPL\¬
◦ TΣ)φS\boolYS
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(σhead
S , σbody

S ) = (TΣPL\¬,& × TΣPL\¬)(µ ◦ TΣσS) :

((TΣPL\¬,& × TΣPL\¬) ◦ TΣ)φS\boolXS //

((TΣPL\¬,& × TΣPL\¬) ◦ TΣ)φS\boolYS

σHC = (σhead
bool, σ

body
bool) : SenHCLXS // SenHCLYS
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Extending Goguen’s and Meseguer’s frameworks for
institutions and entailment systems

The term monad can be abstracted by Θ: Sign // Mnd[C]
with Mnd[C] being the category of monads over C of
‘variable objects’.
Clearly, a special case is Θ(Σ) = TTTΣ.
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The Sen functor is abstracted as

Sen : Mnd[C] // [C,D],

where D is monoidal biclosed and [C,D] is the functor
category, that is, for any monad F ∈ Ob(Mnd[C]) we have a
functor

Sen(F) : C // D

taking some object of variables to sentences over that
object.
SenHCL is of the form Sen(TΣ) : SetS // Set, where
Σ = (S,Ω).
SenHCL(Q) of the form Sen(TΣ) : Set(Q)S // Set(Q) can
be constructed.
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Sen(Θ(Σ)) : C // D

Sen(TΣ) : Set(Q)S // Set(Q)

Note how the signature is underlying everything, and once
the term functor has been abstracted, substitution is really
the “fuel” of logic inference.
Generalized proof calculus can now be done without
explicitly saying what the terms are!
Soundness and completeness, conceptully generalized,
can potentially be analysed in a very general sense, and
generalized substitution (for terms, not sentences!) is a key
issue in this general framework of Lative Logic.
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A generalized entailment system, E , is a structure
E = (Sign,Sen,ΦΦΦ,L,`) where

Sign is a category of signatures;
Sen is the ‘sentence functor’;
ΦΦΦ = (Φ, η) is a premonad over C with an object of ΦSen(Σ)
being called a theoremata;
L is a completely distributive lattice; and
` is a family of L-valued relations consisting of

`Σ : ΦSen(Σ)× ΦSen(Σ) // L

for each signature Σ ∈ Ob(Sign) where `Σ is called a
Σ-entailment.
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These are subject to the condition that, for Γ1, Γ2, Γ3 ∈ ΦSen(Σ)
(over Set), each `Σ

is reflexive, that is, (Γ1 `Σ Γ1) = >;

is axiom monotone, that is,

((Γ1 ∨ Γ2) `Σ Γ3) ≥ (Γ1 `Σ Γ3) ∨ (Γ2 `Σ Γ3);

is consequent invariant, i.e.,

(Γ1 `Σ Γ2) ∧ (Γ1 `Σ Γ3) = (Γ1 `Σ (Γ2 ∨ Γ3));

is transitive in the sense that

(Γ1 `Σ Γ2) ∧ ((Γ1 ∨ Γ2) `Σ Γ3) ≤ (Γ1 `Σ Γ3); and

is an `-translation, meaning that

(Γ1 `Σ Γ2) ≤ (ΦSen(σ)(Γ1) `Σ′ ΦSen(σ)(Γ2))

for all signature morphisms σ ∈ HomSign(Σ,Σ′).
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A generalized institution

I = (Sign,Sen,Mod,ΦΦΦ,L, |=)

is a structure where
Sign is a category of signatures;
Sen is a functor Sen : Sign // Set taking signatures to
sentences,
Mod : Sign // Catop is a functor with Mod(Σ)
representing the category of Σ-models;
L is a completely distributive lattice; and
|= is a family of L-valued relations consisting of

|=Σ : Ob(Mod(Σ))× ΦSen(Σ) // L

for each signature Σ ∈ Ob(Sign) where |=Σ is called a
Σ-satisfaction relation.
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The |=Σ relations must fulfill the satisfaction condition that
states that for all signature morphisms σ ∈ HomSign(Σ,Σ′),
models M ∈ Ob(Mod(Σ)) and theoremata Γ ∈ ΦSen(Σ), |=Σ

must be such that

(Mod(σ)(M) |=Σ Γ) = (M |=Σ′ ΦSen(σ)(Γ)).
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A logic is a tuple
L = (Sign,C,Θ,D,Sen,Mod,Φ,L,`, |=)

and an object in a category of logics, generalizing quite broadly
the Burstall-Goguen-Meseguer frameworks of institutions and
entailment systems. Doing so we in fact more specific about
the sentence functor, which in Burstall-Goguen-Meseguer
frameworks are concretized only in specific examples such as
for FOL and EL.
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More detail can be found in Robert Helgesson’s thesis.
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Type theory as initiated by Schönfinkel, Curry and
Church

As we have seen, going from one-sorted to many-sorted
must be done properly, so that going beyond Set can be
done properly.
Schönfinkel was ‘untyped’, Curry ‘simply typed’, and
Church introduced the intuition about his ι and o ‘types’.
They were all unclear about in which signature these
‘types’ (as sorts) and ‘type constructors’ (as operators)
shold reside.
The formal description of the conventional set of terms
over a signature is clear, but the formalization of the set of
λ-terms is less obvious.
Could we, for instance, avoid the renaming issue with a
more strict construction of the set of λ-terms?
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We introduce ‘levels of signatures’ in order to handle the
‘type’ sort (Church’s ι) and type constructors in a signature
of its own.
Further we depart from λ-abstraction in that we say that
operators in the underlying signature “owns” their
abstractions.
Note that Church indeed called “λ” an improper symbol.
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Levels of signatures for simply typed λ-calculus
1 Level one: The level of ‘primitive and underlying’ sorts and

operations, with a many-sorted signature

Σ = (S,Ω)

2 Level two: The level of ‘type constructors’, with a
single-sorted signature

λΣ = ({ι}, {s :→ ι | s ∈ S} ∪ {V : ι× ι→ ι})

3 Level three: The level in which we may construct ‘λ-terms’
based on the signature

Σλ = (Sλ,Ωλ)

where Sλ = TλΣ
∅, Ωλ = {ωλi1,...,in :→ (si1 V · · ·V (sin−1 V

(sin V s) · · · ) | ω : s1 × . . .× sn → s ∈
Ω, (i1, . . . , in) is a permutation of (1, . . . ,n)} ∪ {apps,t :
(sV t)× s→ t}
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The natural numbers signature in levels

1 Level one:

NAT = ({nat}, {0 :→ nat,succ : nat→ nat})

2 Level two:

λNAT = ({ι}, {nat :→ ι,V : ι× ι→ ι})

3 Level three:
Σλ = (TλNAT∅,Ω

λ)

where Ωλ = {0λ :→ nat,succλ1 :→ (natV
nat)} ∪ {apps,t : (sV t)× s→ t}
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λ-calculus

... so then we can do λ-calculus, fuzzy λ-calculus, λ-calculus
with fuzzy, and so on.

See our “Fuzzy terms” paper in the special FSS issue LINZ
2012.
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ΣDescriptionLogic = (S,Ω)

1 S = {concept}, and we may add constants like
c1, . . . ,cn :→ concept.

2 We include a type constructor P : type→ type into SΩ,
with an intuitive semantics of being the powerset functor,
so that Pconcept is the constructed type for
"powerconcept".

3 "Roles" are r :→ (PconceptV PPconcept), and we
need operators η :→ (conceptV Pconcept) and
µ :→ (PPconceptV Pconcept) in Ω′, so that "∃r .x" can
be defined as

appPPconcept,Pconcept(µ,appPconcept,PPconcept(r, x)).
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The functor QS ◦ TΣDescriptionLogic over Set then provides a
"fuzzy description logic" close to the sense of Yen (1991) and
Straccia (1998), and TΣDescriptionLogic over Set(Q) is not found in
that literature.
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Renaming

In traditional notation, substituting x by succ(y) in
λy .succ(x) should cause a rename of the bound variable
y , e.g., λz.succ(succ(y)).
On level 1, we have the substitution (Kleisli morphism)
σnat : Xnat

// TNAT,nat{Xt}t∈{nat}, where
σnat(x) = succ(y), x being a variable on level 1, and the
extension of σnat is µnat ◦ TNAT,natσnat :
TNAT,nat{Xt}t∈{nat} // TNAT,nat{Xt}t∈{nat}.
On level 3 we have σ′nat : Xnat

// TNAT′,nat{Xt}t∈S′′ , with
σ′nat(x) = appnat,nat(succλ1 , x), x being a variable on
level 3, and µ′nat ◦ TNAT′,natσ′nat(appnat,nat(succλ1 , x))
requiring no renaming.
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Schönfinkel’s Bausteine (1920)

The constancy function C, defined as (Ca)y = a, can be seen
as the type constructor C : type× type→ type fulfilling the
’equational condition’ C(s,t) = s, and ACΣ

would again be a
functor fulfilling the corresponding criteria. Additionally, C can
also be seen as an operator within Σ′ as
Cs,t :→ (sV (tV s)), with
AΣ′(Cs,t) ∈ Hom(AΣ′(s),Hom(AΣ′(t),AΣ′(s))) so that
AΣ′(Cs,t)(x)(y) = x for x ∈ AΣ′(s) and y ∈ AΣ′(t). A sentence,
in equational type logic, prescribing the constancy function
condition would then look like apps,t(Cs,t,t) = s.
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Some of Schönfinkel’s “operators” I, C, T , Z and S can be
’simply typed’ on level two and three (I, C), and some on
level three only (T , Z and S).
See “Modern eyes on λ-calculus” (GLIOC notes,
www.glioc.com)
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Curry’s functionality (1934)

Curry, like Schönfinkel, is weak on making distinction between
syntax and semantics, so F on signature level two would be
F =V: type→ type so that FXY is the term X V Y , with
X ,Y :: type. Thus, Curry’s ` FXYf , representing the statement
that f belongs to that category, means f is the constant
f : X V Y . Both F and f is by Curry called ’entities’, but they
are operators within different signatures.
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Curry believes that point that variables may be introduced
into the formal developments without loss of precision.
This, in our view, is the “what belongs and what does nt” of
variables, leading to fear about ‘loss of precision’.
Variables were at that time mostly viewed as ‘distinct from
constants’.
Curry writes further that variables are not the names of any
entities whatever, but are “incomplete symbols”, whose
function is to indicate possibilities of substitution.



Motivation Terms Sentences Lative logic Type theory Algebras Applications

Church’s simple typing (1940)
We purposely refrain from making more definite the nature of the types o and ι, the
formal theory admitting of a variety of interpretations in this regard. Of course the
matter of interpretation is in any case irrelevant to the abstract construction of the
theory, and indeed other and quite different interpretations are possible (formal
consistency assumed).

Our (β V α) is Church’s (βα).
Speaking in terms of modern type theory involving ‘type’
and ‘prop’, Church’s ι, as we have said, is our type on
signature level two, but o is not something like bool, but
more like a ‘prop’, which is more unclear.
We could imagine a
Vprop,type,type: type× type→ prop corresponding to
Church’s oιι, but it is not obvious how to deal with it.
Intuitively, a quantifier may look like
Π : type× prop→ prop, i.e., like Church’s Πo(oα), but
again, it is not clear how to proceed.
The algebras of type and prop also need to be settled.
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Church’s Iαα operator is Schönfinkel’s identity function I,
and Church’s Kαβα operator is Schönfinkel’s constancy
function C.
His syntactic definitions of natural numbers 0α′ , 1α′ , 2α′ ,
3α′ , etc., is then kind of assuming that the topmost
signature Σ is the empty signature.
Church’s ’variable binding’ operator, or choice function,
ια(oα), is influence e.g. by Hilbert’s ε-operator in the
ε-calculus culminating in Ackermann’s thesis 1924.
The ια(oα) operator obviously has its counterpart in our
framework as well, but appears differently since variables
are only implicitly pointed at by the indices appearing in
ωλi1,...,in .
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The Brouwer-Heyting-Kolmogorov interpretation
Appears in its well-known form propositionally presented by
Komogorov in 1932, Zur Deutung der Intuitionistischen Logik:

Es gilt dann die folgende merkwürdige Tatsache: Nach der
Form fällt die Aufgabenrechnung mit der Brouwersehen,
von Herrn Heyting neuerdings formaliaierten,
intuitionistischen Logik zusammen.
Wit glauben, daß nach diesen Beispielen und Erklärungen
die Begriffe “Aufgabe” und “Lösung der Aufgabe” in allen
Fällen, welche in den konkreten Gebieten der Mathematik
vorkommen, ohne Mißverständnis gebraucht werden
können. Die Hauptbegriffe der Aussagenlogik “Aussage”
und “Beweis der Aussage” befinden sich nicht in besserer
Lage.
Wenn a und b zwei Aufgaben sind, bezeichnet a ∧ b die
Aufgabe “beide Aufgaben a und b lösen”, . . .
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The Curry-Howard isomorphism
Appears in its most well-known form presented by Howard in
1969/1980, The formulae-as-types notion of construction and
was based e.g. on Curry’s and Fey’s Combinatory Logic from
1958:

The following consists of notes which were privately
circulated in 1969. Since they have been referred to a few
times in the literature, it seems worth while to publish them.
(Howard,1980)
Let P(⊃) denote positive implicational propositional logic.
By a type symbol is meant a formula of P(⊃).
(Howard,1980)
This can be seen as Σ = (S,∅), on level 1, where S is
viewed as the set of ‘prime formulae’, TλΣ

∅ is the set of all
formulae in P(⊃).
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If we now have BOOL = ({bool}, {ai :→ bool | i ∈
I} ∪ {⇒,∧ : bool× bool→ bool}) on level one, then
BOOL′ = (TλΣ

∅, {ai
λ
0 :→ bool | i ∈ I} ∪ {⇒λ

1,2,∧λ1,2 :→
(boolV (boolV bool))} ∪ {apps,t : (sV t)× s→ t |
s,t ∈ TλΣ

∅}) providing TBOOL′∅ on level three is not to be
confused with TλΣ

∅ on level two.
Adding Schönfinkel’s Cs,t :→ (sV (tV s)) (Curry’s K) as
an operator on level 3 is then seen as an ‘axiom’.
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Algebras

In the two-valued case, A(bool) is often {false, true}, so
that A(F) = false and A(T) = true.
A(&) : A(bool)× A(bool) // A(bool), is expected to be
defined by the usual ‘truth table’.
We may assign for a signature ΣPL = (SPL,ΩPL) a pair, the
‘many-sorted algebra’, (TΣPLXS, (A(ω))ω∈ΩPL), where
Xs = ∅ if s 6= bool.
Then, (

⋃
s∈S(args ◦ TΣPL)XS, (F,T,&,¬)) serves as a

traditional Boolean algebra, when certain equational laws
are given.
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Programs and their interpretations (paper presented at
WILF 2014

Γ = {(h1,b1), . . . , (hn,bn)} ⊆ SenHCLXS

(UΓ)S = TΣ∅S = (TΣ,s∅S)s∈S⋃
s∈S(UΓ)s corresponds to the traditional and unsorted

view of the Herbrand universe
BΓ = (argbool ◦ TΣPL\¬,&

◦ TΣ) ∅S corresponds to the
Herbrand base
Herbrand interpretations of a program Γ are subsets
I ⊆ BΓ

we also need what we call the Herbrand expression base:
B&

Γ = (argbool ◦ TΣPL\¬
◦ TΣ) ∅S

a Herbrand interpretation I canonically extends to a
Herbrand expression interpretation I& ⊆ B&

Γ
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Substitution fuzzy Horn clause logic

fuzzy sets of predicates:
LBΓ = (L ◦ argbool ◦ TΣPL\¬,&

◦ TΣ) ∅S

sentence functor:
SenSFHCL = (argbool)2◦((TΣPL\¬,&×TΣPL\¬)◦LS ◦TΣ◦φ

S\bool)

ground predicates over fuzzy sets of terms:
BL

Γ = (argbool ◦ TΣPL\¬,&
◦ LS ◦ TΣ) ∅S

the fuzzy sets of ground predicates is enabled by the
‘swapper’: ς : TΣPL\¬,&

◦ LS // LS ◦ TΣPL\¬,&
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Fixpoints

considering the effect of substitutions with fuzzy sets of
terms: $L : LBL

Γ
// LBL

Γ

argboolςTΣ∅S : BL
Γ

// LBΓ

$L(I)(σL,head
bool (h)) =

(
∨

t∈BΓ
(argboolςTΣ∅S (h))(t)) ∧ IL,&(σL,body

bool (b))
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Terminologies, classifications and ontologies in social
and health care

WHO’s ICF and ICD-10
ATC for drugs
SNOMED which is believed to have description logic as its
underlying logic for ontology (health onttology and web
ontology is not the same thing!)
fall risk and fall injury risk
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Muscle functions (ICF b730-b749)
Muscle power functions (b730)

...
Power of muscles of all limbs (b7304)
...

Muscle tone functions (b735)
Muscle endurance functions (b740)

The ICF datatypes and its generic scale of quantifiers:

xxx.0 NO problem (none, absent, ...)
xxx.1 MILD problem (slight, low, ...)
xxx.2 MODERATE problem (medium, fair, ...)
xxx.3 SEVERE problem (high, extreme, ...)
xxx.4 COMPLETE problem (total, ...)
xxx.8 not specified
xxx.9 not applicable
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Unknown as unital e with 5-valued set {F, a, b, c, T} of truth values, 
corresponding to the ICF valuations,  
including the unknown as ’not specified’ (problem qualifier code 8) 

e 

F 

T 

e 

T 

F - a - b - c - T - e F - a - b - c - e - T 

c 
e 

T 

F - a - b - {c | e} - T 

c 

b 

a 

F 

c 

b 

a 

F 

b 

a 
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ICD-10

S52 fracture of forearm
S52.5 fracture of lower end of radius

and conflicting ICD-10 extensions, with the ICD-10-CM adopted
in the US going further in direction of

S52.53 Colles’ fracture of radius
S52.532 Colles’ fracture of left radius
S52.532D Colles’ fracture of left radius,

subsequent encounter for closed
fracture with routine healing

where “3” for ‘Colles’ means dorsal displacement, “2” and “-”
after “53” means ‘left or unspecified arm, and “D” means
subsequent encounter for closed fracture with routine healing.
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For comparison, in Germany, the ICD-10-GM (2014) uses

S52.5 Distale Fraktur des Radius
S52.51 Extensionsfraktur, Colles-Fraktur

i.e.,‘Colles’ now is “51”, where the US version says “53”. Thus,
we have to be “internationally careful" when we see a code like
“S52.51”.
In Sweden, the ICD-10-SE is only ICD

S52.5 Fraktur på nedre delen av radius

whereas the Swedish Orthopaedic Association uses

S52.50/51 Distal radius (Barton, Colles, Smith)

where “0” is left and “1” is right, so the Swedish “S52.51” is
different from the German one, and different from the
corresponding US code.
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Sleeping pills affect the balance so the use of
sedatives is a fall risk factor

Anatomic Therapeutic Chemical (ATC) classification of
nitrazepam (code C08DA01), long-acting drug for insomnia:

N nervous system 1st level
main anatomical group

N05 psycholeptics 2nd level,
therapeutic subgroup

N05C hypnotics and 3rd level,
sedatives pharmacological subgroup

N05CD benzodiazepine 4th level,
derivatives chemical subgroup

N05CD02 nitrazepam 5th level
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Downton’s Fall Risk Index (DFRI) assessment scale includes
the item ‘tranquilizers/sedatives’ under “Medications”, so the
user is providing drug information related to a pharmacological
subgroup (3rd level), where nitrazepam (5th level) is one of the
most fall-risk-increasing drugs (FRIDs). Then again, on
interventions it is easy to speak generally about the effect of
“withdrawal of psychotropics” (2nd level). Obviously, from
formal information management point of view, the health care
domain does not always consider data typing and granularity
issues.
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For ATC, on level two we could have

1st,2nd,3rd,4th,5th :→ type

and on level three

PharmacologicIntervention :→ P(3rd)

DrugPrescriptions :→ P(5th)

hypnotics_and_sedatives :→ 3rd

benzodiazepine_derivatives :→ 4th

nitrazepam :→ 5th

drug :→ 5th

φ5th→4th : 5th→ 4th

φ4th→3rd : 4th→ 3rd

φ5th→3rd : 5th→ 3rd
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This then makes a clear distinction between nitrazepam as a
term of type 5th and φ5th→3rd(nitrazepam) as a sedative of
type 3rd. Further, for the variable drug, we can make a
substitution with nitrazepam, because the types match, but we
cannot substitute with hypnotics_and_sedatives. For
Downton’s index the consequence is that φ5th→3rd(drug) may
appear as a value in the scale, but not drug. This is also
important in considerations of uncertainty. A relative to a
patient may be fairly sure about hypnotics_and_sedatives, but
not all that certain about that sedative being a
benzodiazepine_derivatives. Additional operators is required to
capture the notion of uncertainty being carried over between
ATC levels.
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Gerontological and geriatric assessment in general,
and fall risk assessment in particular.
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Implementations e.g. within the AAL Call 4 project AiB
(Ageing in Balance)

Level one:

GERONTIUM = (S,Ω)

where S = {nat,bool,scale, . . . }. Operators in Ω can be
provided in a number of ways, and is left unspecified at this
point.
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Level two:

λGERONTIUM = ({Observation,Assessment}, λΩ)

λΩ:

s :→ Observation,s ∈ S
� : Observation× Observation→ Observation

� : Assessment× Assessment→ Assessment

P : Assessment→ Assessment

VObservation : Observation× Observation→ Observation

VAssessment : Assessment× Assessment→ Assessment
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CognitiveDementia :→ Assessment

Non−CognitiveDementia :→ Assessment

ADL :→ Assessment

Depression :→ Assessment

Delirium :→ Assessment

Nutrition :→ Assessment

SubstanceRelated :→ Assessment

Pain :→ Assessment

GeriatricAssessment :→ Assessment
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MedicalFactors :→ Assessment

Drugs :→ Assessment

PsychologicalFactors :→ Assessment

PosturalControl :→ Assessment

EnvironmentalFactors :→ Assessment

FallRiskAssessment :→ Assessment
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Level three:

GERONTIUMλ = (TλGERONTIUM∅,Ω
λ)

Ωλ, including the Falls Efficacy Scale - International (FES-I) as
an example of an assessment scale:

FES−I :→ (scale4\16

V (scale64 � scale3
� PsychologicalFactors))

Odepression : P Depression→ Depression

OA :→ P CognitiveDementia � . . .

FallOA :→ P MedicalFactors � . . .

apps,t : (sV t)× s→ t
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