

-SemanticHealthNet-A Semantic Infrastructure Towards Semantic Interoperability

Catalina Martínez-Costa¹, Stefan Schulz¹ and Dipak Kalra²

¹IMI, Medical University of Graz, Austria ²CHIME, University College London, UK

SNOMED CT Implementation Showcase

30th-31st October 2014

Amsterdam, The Netherlands

Introduction - SemanticHealthNet (SHN) Project

3 years EC NoE Project (2012-2015)

Global mission:

- Develop and test approaches to improve semantic interoperability of health data
- Create a virtual organization to sustain semantic interoperability developments and their adoption across Europe

Workpackage 4 mission:

 Provide an intermediate semantic layer able to deal with the unavoidable heterogeneity which arises when clinical information is represented across or within the same medical domain

Workpackage 4 Basic Assumptions

Plurality of Information Model approaches exists:

- openEHR, EN ISO 13606, HL7 RIM, CIMI, SIAMM, etc.
- Local schemas are still predominant
- Information model like structures in existing terminology context
 model of SNOMED CT
- Free text (out of scope in SHN)
- Plurality of representations within one specification
- WP4's relation to Information Models:
 - Does not develop "yet another" information model
 - Maintains equidistance and neutrality
 - Looks at content and not at structure

The role of SNOMED CT in the Project

- Provide agreed formal definitions of medical concepts (i.e. act as medical domain ontology)
- **Reference ontology** for representing medical domain concepts (e.g. mappings from ICD-11, LOINC, etc. to SNOMED

SNOMED CT - Information Model binding

Existing Terminology Binding Approaches

• Guidelines specifications-based approaches: they address the most common overlaps and provide modelling guidelines to resolve ambiguities (e.g. TermInfo, NHS openEHR work)

HL7 TermInfo guideline rule example:

"An Observation class instance in which the Observation.value is a SNOMED CT expression representing a [<<404684003 | clinical finding] or a [<<413350009 | finding with explicit context] SHALL NOT contain an Act.code which when interpreted with the Observation.value yields a meaning that is substantially different from the meaning implied if the Act.code was "ASSERTION".

• For example, an Act.code meaning "Past history" or "Family history" may substantially alter the interpretation of a [<<404684003 | clinical finding] and should not be used in this way. Instead the SNOMED CT context model should be used to capture these significant differences in meaning."

It might work for a concrete implementation between an information model and terminology. It does not guarantee interoperability across representations based on <u>other guidelines</u>.

Existing Terminology Binding Approaches (II)

- Define clinical models and constrain their elements and values to a set of SNOMED CT values.
 - Simpler approaches: EN ISO 13606, openEHR, etc.
 - More sophisticated approaches based on the definition of a set of general clinical models: CIMI, SIAMM
- Simple approach example (EN ISO 13606):

Existing Terminology Binding Approaches (II)

Sophisticated approach example (CIMI):

```
ENTRY[at0000.1] matches { -- Observation
                       link matches {LINK[at0.1] occurrences matches {0..*} -- Associated request}
                       data matches {
                       → use archetype CLUSTER [CIMI-CORE-CLUSTER.observable.v1] -- Observable
                           use archetype CLUSTER [CIMI-CORE-CLUSTER.finding.v1] -- Results
                          use archetype CLUSTER [CIMI-CORE-CLUSTER.observe action.v1] -- Observe action
CLUSTER[at0000] matches { -- Observable
 item matches {
                                                                   CLUSTER[at0000] matches { -- Action
   ELEMENT[at0001] occurrences matches {1} matches { -- Name
    value matches { TEXT matches {*}}}
                                                                     item matches {
                                                                      ELEMENT[at0001] occurrences matches {1} matches { -- Action type
   ITEM[at0002] occurrences matches {0..*} -- Reason
   ITEM[at0003] occurrences matches {0..*} -- Method
                                                                        value matches { CODED TEXT matches {*}}}
   ELEMENT[at0004] occurrences matches {0..1} matches { -- Status
                                                                      ITEM[at0009] occurrences matches {0..*} -- Reason
    value matches { CODED_TEXT matches {*}}}
                                                                      ITEM[at0010] occurrences matches {0..*} -- Method
```

- Simple approaches do not address the boundary problem and produce non-interoperable clinical models
- Sophisticated approaches forbid the use of certain SNOMED CT hierarchies (e.g. context model)
- In both the decision of the elements to include in a clinical model is mainly a modeler decision not guided by any formal constraint

SHN Terminology Binding Approach

- Ontology design content patterns: small fragments of an ontology for modelling an specific use case
- First introduced by Gangemi, Blomqvist and Sandkuhl in 2005.
- They were devised to guide and standardize the way ontologies are developed
- Intended to help non-expert ontology users
- They package best practice into reusable blocks of ontology functionality, to be adapted and specialized by those users in their individual ontology development use cases

SHN Semantic Patterns

They are based on the SemanticHealthNet ontological

SHN Semantic Patterns

- They are are language-independent and should be encoded in a high order representation language
- We have represented them as:
 - A set of RDF (Subject-Predicate-Object) triples enhanced by cardinality constraint

shn:InformationItem 'describes situation' shn:ClinicalSituation
shn:InformationItem 'results from process' shn:ClinicalProcess

– OWL 2 DL:

- RDF Subject and Object transform into OWL classes
- RDF Predicate transforms into OWL DL expression

shn:InformationItem

and **shn:isAboutSituation** only **shn:ClinicalSituation** and **btl:isOutcomeOf** some **shn:ClinicalProcess**

SHN Semantic Patterns (II)

 They can be specialised and composed by following similar principles to object oriented languages

Pattern Specialisation / Composition

RDF Triple Specialisation

Top-level Semantic Patterns

OUR HYPOTHESIS:

 A limited set of top-level semantic patterns that can be specialized and composed is sufficient to represent a great variety of clinical information.

7 top-level patterns extracted from the SHN Heart Failure Summary

Top-level pattern	Example
OBSERVATION RESULT PATTERN (OB_PT)	record of body weight, height, etc-
INFORMATION CLINICAL SITUATION (I_CS_PT)	Cancer diagnosis, breathlessness symptom, etc.
PLAN CLINICAL PROCESS (P_CP_PT)	request to administer some drug, etc.
CLINICAL PROCESS (CP_PT)	assessment, history taking, etc.
CLINICAL SITUATION (CS_PT)	heart attack, diabetes, cancer, etc.
PAST HISTORY CLINICAL SITUATION (PH_CS_PT)	past history of heart failure, past history of cancer, etc.
FAMILY HISTORY CLINICAL SITUATION (FH_CS_PT)	family history of diabetes, family history of high blood pressure, etc.

Pattern Specialisation / Composition

Semantic HealthNet Semantic Framework

Homogeneous access point to clinical information

SEMANTIC INFRASTRUCTURE

SHN Semantic Patterns role

- Allow the consistent use of SNOMED CT within EHR clinical models (i.e. address the boundary problem)
- Enable semantic interoperability across heterogeneously structured clinical models within or not the same EHR specification
 - Enable querying over data heterogeneously structured and encoded
- Provide advanced clinical information exploitation capabilities
- Guide the development of new clinical models
- Detect semantic inconsistencies across existing clinical models

Semantic Interoperability Example

Clinical study about endocrine diseases

- Patients with history of some endocrine disease
- Patients with history of diabetes mellitus
- Patients with history of **mild** diabetes mellitus
- Patients with history of gestational diabetes

Semantic Interoperability Example (II)

General questionnaire – ISO 13606 Representation

Semantic Interoperability Example (III)

Gynaecologist form – ISO 13606 Representation ENTRY[at0000] matches {-- Past history **SNOMED CT Terminology Binding** items matches { terminology binding **ELEMENT[at0001]** matches { -- Condition disorder)' value matches { 'Pregnancy observable (observable entity)' **CODED TEXT** matches {*} } CLUSTER[at0002] matches { -- Details 'Mild (qualifier value)' items matches { **ELEMENT[at0001]** matches { - Cause shn:ClinicalSituation value matches { 'has participant' [0..' **CODED TEXT** matches {*} }}} btl:MaterialObject **ELEMENT[at0001]** matches { -- Severity 'occurs at' [0..*] btl:TemporalRegion value matches 'happens at' [0..* btl:MateriaObject OR btl:InmaterialObject shn:InformationItem 'follows' [0..*] shn:ClinicalSituation 'describes situation' [1..*] shn:ClinicalSituation 'results from process' [1..* shn:ClinicalProcess has attribute' [0..*] shn:InformationAttribute 'has temporal context' [1..1 sct:InThePast 'has situation context' [1..1 19

sct:FindingContextValue

Challenges

√ "Non-technical" challenges:

- ✓ Get more evidence that clinical models information can be sufficiently represented by semantic patterns
- ✓ Get more evidence that a limited number of top-level patterns is sufficient to derive more specific patterns by specialisation / composition mechanisms
- ✓ Engage clinical modelers community to help in testing the content coverage of the patterns

✓ Technical challenges:

- ✓ Provide different representations for different tasks
 - ✓ Closer to user representation
 - √ Logical representation (OWL DL)
 - ✓ RDF representation (RDF Shapes, SPIN)
 - ✓ UML-like representation
 - ✓ Etc.
- ✓ Solve performance issues related with the use of OWL DL
- ✓ Grow libraries of patterns
- ✓ Provide tools that facilitate clinical modelers engagement

Conclusion

- ✓ We need to be able to use terminologies consistently within EHR information models to achieve semantic interoperability
- ✓ We need methods that allow their consistent use independently of the particular EHR representation (we need to focus on the content and not on the structure!)
- ✓ Semantic patterns allow setting the focus on the content (information meaning)
- ✓ Semantic patterns were motivated by our experiences of representing semantically clinical information
- ✓ For getting more evidence of their usefulness we need the engagement of the community in order to see if this is something else than theoretical research

Thanks for your attention

Questions?

Comments?

