
GETTING GROOVY WITH SNOMED CT –

SOLVING PRACTICAL PROBLEMS WITH

SCRIPTING IN SNOW OWL

Balazs Banfai, Brandon Ulrich

B2i Healthcare

What is Groovy?

Groovy is a dynamic programming language that

builds upon the strengths of Java with a very flat

learning curve for people familiar with object-

oriented languages. It is easy to read and learn and

has scripting and domain-specific language support

which makes it ideal for providing scripting support

for SNOMED CT tools written in Java.

Groovy highlights

 Runs on a Java VM
 Call Groovy code from Java and to call Java code from

Groovy.

 Works with well-tested frameworks such as Spring

 Groovy classes/Groovy scripts

 Everything is an object
 -1.abs()

 println "This is a string 321".toSet().sort().join().reverse().replaceAll(" ", "");

 Static or optional typing
 str = “I’m a string”

 Collections are native to the language
 code_systems = [‘SNOMED CT’, ‘ICD-10’, ‘ATC’]

Groovy highlights - Closures

A closure is a piece of code wrapped up as an object.

def closure = { param -> println("hello ${param}") }

def closure = { println "hello " + it }

closure.call("world!") //hello world!

Closure envelope = { person -> new Letter(person).send() }

addressBook.each (envelope)

addressBook.each { new Letter(it).send() }

def value = [1, 2, 3].findAll { it > 1 }

assert value == [2, 3]

def service = new SnomedHierarchicalService()

def targetConcepts = service.getTargetConcepts(CLINICAL_FINDING_ID,

ASSOC_FINDING_ID)

targetConcepts.each {

 println "ID: $it.id label: $it.label”

}

Groovy highlights - Markup

def service = new SnomedHierarchicalService()
def rootConcepts = service.rootConcepts
def rootNodes = service.getSubtypes(rootConcepts[0].id)
def writer = new StringWriter()
def xml = new MarkupBuilder(writer)
xml.rootConcepts() {
 rootNodes.each {
 def directChildren = service.getSubtypes(it.id)
 rootNode(id: it.id, label: it.label) {
 directChildren.each { childNode(id: it.id, label: it.label) }
 }
 }
}
println writer.toString()

<rootConcepts>

 <rootNode id='78621006' label='Physical force'>

 <childNode id='80032004' label='Fire' />

 <childNode id='18213006' label='Electricity' />

 …

 <childNode id='125676002' label='Person' />

 </rootNode>

 <rootNode id='370115009' label='Special concept'>

 <childNode id='362955004' label='Inactive concept' />

 <childNode id='363743006' label='Navigational concept' />

 </rootNode>

 <rootNode id='363787002' label='Observable entity'>

 …

Groovy highlights - Dynamic Object Orientation

 Meta Object Protocol

 Builders

 ExpandoMetaClass
//extending a SNOMED CT concept representat

IComponent.metaClass.getToHtmlString {

 "<tr>\n<td>" + delegate.id + "</td>\n<td>" + delegate.label + "</td>\n</tr>\n"

}

println it.toHtmlString

 DSL support

Snow Owl’s Groovy support

 Snow Owl provides and Integrated Development
Environment (Groovy-Eclipse) that allows editing,
compiling, running, and debugging Groovy scripts and
classes from within Snow Owl.

 The integrated editor includes syntax highlighting, type
inferencing, formatting, debugging, refactoring, auto-
completion.

 Ideal for terminologist, medical informatics specialist or
anyone interested in terminology management and
authoring.

Snow Owl’s Groovy editor

Snow Owl service API

 Most frequently used services

 FullTextSearchService

 HierarchicalService

 LookupService

 QueryEvaluatorService

 ExpressionService

 CodeSystemService

 AdminService

Candidates for scripting

 Ad-hoc queries

 Complex queries

 Ad-hoc reports in custom formats (text, markup)

 Artefact generation/updates

 Bulk terminology updates including the generation of terminology
artefacts

 Terminology server access via REST protocol

 Even from shell:

#!/usr/bin/env

groovy println "Hello, World!”

 DSL language development

 Combinations of the above with possible automatized execution

Concrete examples - Medicinal product descriptions

ConceptId PT Synonym Synonym Synonym Synonym

387121001 Clonidine hydrochloride

96098007 Valaciclovir Valacyclovir Valacyclovir

372511001 Benazepril

373544004 Antazoline Phenazoline

6612003 Chloramphenicol Sodium Succinate

88427007 Methyl acetylene Propine Allylene 1-Propyne Propyne

38911000133101 Dapsone only

372485004 Tiagabine

404839003 Sodium Ibandronate Ibandronate Sodium Ibandronate sodium

85603004 Triphenamyl

…. …..

 List the SNOMED CT concept ID, PT, and Synonyms for

 all descendants of ‘Drug allergen or pseudoallergen’

 not members in the Ingredients refset

 tab separated table format.

Concrete examples – Ad-hoc report in html format

 Find all Clinical findings where the concept definition
describes congenital origin and an autoimmune
pathological process.

 Filter the results to concepts with any description that
includes the word ‘congenital’.

 Render the results in an HTML table

SNOMED CT ID Preferred term

230672006 Congenital myasthenia

193216006 Congenital and developmental myasthenia

230677000 Congenital end-plate acetylcholinesterase deficiency

230673001 Congenital end-plate acetylcholine receptor deficiency

Concrete examples - Medicinal product descriptions

Downstream users of NRC may have limitations in their systems as to the number of
characters allowed within descriptions that are displayed. There was concern about the
readability of these shorter descriptions for drugs that

 met a particular prescribing use case

 were not oral tablets

 contained less than 3 active ingredients

Therefore the customer wanted to output a list of preferred terms for these drugs along
with the short description so that pharmacists could determine if there was potential for
confusion when using the short names.

To answer this request, our customer first created a semantic query using the

HL7 TermInfo standard to find drugs meeting a particular use case (medicinal

product preparations) that did not have an oral tablet dose form. Next, the

developer iterated through these results, discarding drugs that had more than

3 active ingredients. Finally, the developer created a file with a table of the

preferred terms and short names.

Concrete examples – SNOMED CT DSL

 '386536003'.pt

 '386536003'.terms

 '386536003'.exist

 '126134000'.eachSynonym { println "ID: ${it.id} Term: ${it.label} »}

 '410607006'.subTypes.each { println it.label }

 def sortedBySizeSynonyms = '126134000'.synonyms.sort {it.label.size()}

 sortedBySizeSynonyms.each { println it.label }

 escgQuery.evaluate.filter('Congenital').toHtml

Future work

 Server-side scripting, scheduled automation

 Service injection into the runtime environment (no

need to import and instantiate services)

 Continue to expose Snow Owl’s functionality as a

high-level API for scripting

Questions?

